Selected recent publications from the Broderick lab:

Broderick, J. B. (2022) Unraveling the secrets of radical SAM mechanisms, FASEB J 36 Suppl 1. 10.1096/fasebj.2022.36.S1.0I187

Pagnier, A., Balci, B., Shepard, E. M., Yang, H., Warui, D. M., Impano, S., Booker, S. J., Hoffman, B. M., Broderick, W. E., and Broderick, J. B. (2022) [FeFe]-Hydrogenase: Defined Lysate-Free Maturation Reveals a Key Role for Lipoyl-H-Protein in DTMA Ligand Biosynthesis, Angew Chem Int Ed Engl, e202203413 10.1002/anie.202203413

Lundahl, M. N., Sarksian, R., Yang, H., Jodts, R. J., Pagnier, A., Smith, D. F., Mosquera, M. A., van der Donk, W. A., Hoffman, B. M., Broderick, W. E., and Broderick, J. B. (2022) Mechanism of Radical S-Adenosyl-l-methionine Adenosylation: Radical Intermediates and the Catalytic Competence of the 5′-Deoxyadenosyl Radical, J Am Chem Soc 144, 5087-5098 10.1021/jacs.1c13706

Walls, W. G., Moody, J. D., McDaniel, E. C., Villanueva, M., Shepard, E. M., Broderick, W. E., and Broderick, J. B. (2022) The B12-independent glycerol dehydratase activating enzyme from Clostridium butyricum cleaves SAM to produce 5′-deoxyadenosine and not 5′-deoxy-5′-(methylthio)adenosine, J Inorg Biochem 227, 111662 10.1016/j.jinorgbio.2021.111662

Payne, D., Shepard, E. M., Spietz, R. L., Steward, K., Brumfield, S., Young, M., Bothner, B., Broderick, W. E., Broderick, J. B., and Boyd, E. S. (2021) Examining Pathways of Iron and Sulfur Acquisition, Trafficking, Deployment, and Storage in Mineral-Grown Methanogen Cells, J Bacteriol 203, e0014621 10.1128/JB.00146-21

Shepard, E. M., Impano, S., Duffus, B. R., Pagnier, A., Duschene, K. S., Betz, J. N., Byer, A. S., Galambas, A., McDaniel, E. C., Watts, H., McGlynn, S. E., Peters, J. W., Broderick, W. E., and Broderick, J. B. (2021) HydG, the “dangler” iron, and catalytic production of free CO and CN(-): implications for [FeFe]-hydrogenase maturation, Dalton Trans 50, 10405-10422 10.1039/D1DT01359A

Impano, S., Yang, H., Shepard, E. M., Swimley, R., Pagnier, A., Broderick, W. E., Hoffman, B. M., and Broderick, J. B. (2021) S-Adenosyl-l-ethionine is a Catalytically Competent Analog of S-Adenosyl-l-methione (SAM) in the Radical SAM Enzyme HydG, Angew Chem Int Ed Engl 60, 4666-4672 10.1002/anie.202014337

Impano, S., Yang, H., Jodts, R. J., Pagnier, A., Swimley, R., McDaniel, E. C., Shepard, E. M., Broderick, W. E., Broderick, J. B., and Hoffman, B. M. (2021) Active-Site Controlled, Jahn-Teller Enabled Regioselectivity in Reductive S-C Bond Cleavage of S-Adenosylmethionine in Radical SAM Enzymes, Journal of the American Chemical Society 143, 335-348 10.1021/jacs.0c10925

Pagnier, A., Yang, H., Jodts, R. J., James, C. D., Shepard, E. M., Impano, S., Broderick, W. E., Hoffman, B. M., and Broderick, J. B. (2020) Radical SAM Enzyme Spore Photoproduct Lyase: Properties of the Omega Organometallic Intermediate and Identification of Stable Protein Radicals Formed during Substrate-Free Turnover. J Am Chem Soc 142, 18652-18660 10.1021/jacs.0c08585

Nemeth, B., Senger, M., Redman, H. J., Ceccaldi, P., Broderick, J., Magnuson, A., Stripp, S. T., Haumann, M., and Berggren, G. (2020) [FeFe]-hydrogenase maturation: H-cluster assembly intermediates tracked by electron paramagnetic resonance, infrared, and X-ray absorption spectroscopy. J Biol Inorg Chem 25, 777-788 10.1007/s00775-020-01799-8

Yang, H., Impano, S., Shepard, E. M., James, C. D., Broderick, W. E., Broderick, J. B., and Hoffman, B. M. (2019) Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an S-Adenosylmethionine Derived Methyl Radical. J Am Chem Soc 141, 16117-16124

Byer, A. S., Shepard, E. M., Ratzloff, M. W., Betz, J. N., King, P. W., Broderick, W. E., and Broderick, J. B. (2019) H-cluster assembly intermediates built on HydF by the radical SAM enzymes HydE and HydG. J Biol Inorg Chem 24, 783-792

Galambas, A., Miller, J., Jones, M., McDaniel, E., Lukes, M., Watts, H., Copie, V., Broderick, J. B., Szilagyi, R. K., and Shepard, E. M. (2019) Radical S-adenosylmethionine maquette chemistry: Cx3Cx2C peptide coordinated redox active [4Fe-4S] clusters. J Biol Inorg Chem 24, 793-807

Broderick, W. E., and Broderick, J. B. (2019) Radical SAM enzymes: surprises along the path to understanding mechanism. J Biol Inorg Chem 24, 769-776

Yang, H., McDaniel, E. C., Impano, S., Byer, A. S., Jodts, R. J., Yokoyama, K., Broderick, W. E., Broderick, J. B., and Hoffman, B. M. (2019) The Elusive 5′-Deoxyadenosyl Radical: Captured and Characterized by Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Spectroscopies. J Am Chem Soc 141, 12139-12146

Hanscam, R., Shepard, E. M., Broderick, J. B., Copie, V., and Szilagyi, R. K. (2019) Secondary structure analysis of peptides with relevance to iron-sulfur cluster nesting. J Comput Chem 40, 515-526

Adelson, C. N., Johnston, E. M., Hilmer, K. M., Watts, H., Dey, S. G., Brown, D. E., Broderick, J. B., Shepard, E. M., Dooley, D. M., and Solomon, E. I. (2019) Characterization of the Preprocessed Copper Site Equilibrium in Amine Oxidase and Assignment of the Reactive Copper Site in Topaquinone Biogenesis. J Am Chem Soc 141, 8877-8890

William E. Broderick, Brian M. Hoffman, Joab B Broderick, “Mechanism of Radical Initiation in the Radical S-Adenosyl-L-methionine Superfamily,” Acc. Chem. Res. 2018, 51(11), 2611–2619.
10.1021/acs.accounts.8b00356

Amanda S. Byer, Hao Yang, Elizabeth C. McDaniel, Venkatesan Kathiresan, Stella Impano, Adrien Pagnier, Hope Watts, Carly Denler, Anna L. Vagstad, Jorn Piel, Kaitlin S. Duschene, Eric M. Shepard, Thomas P. Shields, Lincoln G. Scott, Edward A. Lilla, Kenichi Yokoyama, William E. Broderick, Brian M. Hoffman, and Joan B. Broderick, “Paradigm shift for radical S-adenosyl-l-methionine reactions: the organometallic intermediate Ω is central to catalysis,” J. Am. Chem. Soc. 2018, 140, 8634-8638. 10.1021/jacs.8b04061

Anna G. Scott, Robert K. Szilagyi, David W. Mulder, Michael W. Ratzloff, Amanda S. Byer, Paul W. King, William E. Broderick, Eric M. Shepard, and Joan B. Broderick, “Compositional and structural insights into the nature of the H-cluster precursor on HydF,” Dalton Trans. 2018, 47, 9521-9535. 10.1039/c8dt01654b

Eric M. Shepard, Amanda S. Byer, and Joan B. Broderick, “Iron-Sulfur Cluster States of the Hydrogenase Maturase HydF,” Biochemistry 2017, 56, 4733-4734.  10.1021/acs.biochem.7b00735

Krista A. Shisler, Rachel U. Hutcheson, Masaki Horitani, Kaitlin S. Duschene, Adam V. Crain, Amanda S. Byer, Eric M. Shepard, Ashley Rasmussen, Jian Yang, William E. Broderick, Jessica L. Vey, Catherine L. Drennan, Brian M. Hoffman, and Joan B. Broderick, “Monovalent cation activation of the radical SAM enzyme pyruvate formate-lyase activating enzyme,” J. Am. Chem. Soc. 2017, 139, 11803-11813.  10.1021/jacs.7b04883

 

Eric M. Shepard, Amanda S. Byer, Priyanka Aggarwal, Jeremiah N. Betz, Anna G. Scott, Krista A. Shisler, Robert J. Usselman, Gareth R. Eaton, Sandra S. Eaton, and Joan B. Broderick, “Electron spin relaxation and biochemical characterization of the hydrogenase maturase HydF: Insights into [2Fe-2S] and [4Fe-4S] cluster communication and hydrogenase activation,” Biochemistry 2017, 56, 3234-3247.  10.1021/acs.biochem.7b00169

Eric M. Shepard, Amanda S. Byer, Jeremiah N. Betz, John W. Peters, and Joan B. Broderick, “A Redox Active [2Fe-2S] Cluster on the Hydrogenase Maturase HydF,” Biochemistry 2016, 55(25), 3514-3527.  10.1021/acs.biochem.6b00528

Masaki Horitani, Krista Shisler, William E. Broderick, Rachel U. Hutcheson, Kaitlin S. Duschene, Amy R. Marts, Brian M. Hoffman, and Joan B. Broderick, “Radical SAM catalysis via an organometallic intermediate with an Fe-[5’-C]-deoxyadenosyl bond,” Science 2016, 352(6287), 822-825.  10.1126/science.aaf5327

Masaki Horitani, Amanda S. Byer, Krista A. Shisler, Tilak Chandra, Joan B. Broderick, Brian M. Hoffman, “Why Nature uses radical SAM enzymes so widely: ENDOR studies of lysine 2,3-aminomutase shows the 5’-dAdo• ‘Free Radical’ is never free,” J. Am. Chem. Soc. 2015, 137(22) , 7111 – 7121.  10.1021/jacs.5b00498